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= Q: What is special about deep learning?
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Deep Learning as Representation Learning

Q: What is special about deep learning?
- A: Learning meaningful representations.
In DL, input is transformed to a vector, which

- contains relevant information to solve a
given task and

- is called a representation or a feature
vector.

= DL research = “how to learn good

representations?”.

= Different building blocks are introduced to

learn good representations.

= |n this lecture, we will learn a new building

block: self-attention.
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Sequence-to-Sequence Models

Input: a sequence of vectors.
Output: a sequence of vectors.
Example: Machine translation
* Input: How are you?
- Qutput: Wie geht es dir?
How to turn words in vocabulary Vinto a
sequence of d-dimensional vectors?
c x=W-v,where We RIV*and yis
a one-hot vector.

How to handle different lengths of
sequences”?

« One could use an RNN.

Encoder

?

X1

1

X2 X3

?

Xm

10109A

Y1 Y2 Y3 Yn
t tt ¢
Decoder




Limitation of RNNs

= Main Problem: In an RNN (or LSTM) far
away words are not much related.
- Jane went to the cafeteria to buy a
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Limitation of RNNs

Main Problem: In an RNN (or LSTM) far
away words are not much related.

- Jane went to the cafeteria to buy a
cup of coffee, but she couldn't buy

anything because it was closed. e W o
All the information is encoded in one / T
vector: y, = f(x,, y,_)

Solution: Self-Attention X1 X2 R
- Represent the current word using Jane went it
the representations of all other

words.

- But how does self-attention work in
detail?
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V' is a matrix (trainable).

[ |
= Compute the value vectors
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A | i
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Self-Attention: The Idea

V' is a matrix (trainable).

.
= Compute the value vectors

- v, =V-x
= Prepare weights a{, ey a,f;,l >0 1 [ o X
. New vectorx! = alv; + ... + @’ v, .

Vi V2 V20

m
= How to obtain the weights af, ey a,i,t?

Jane went 1t
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Summary

= Deep Learning allows for learning good representations.
= There are different DL building blocks for learning good representations.
= Self-attention is a DL building block that overcomes limitations of an RNN.
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Transformer: Introduction

= Sequence-to-Sequence Model.

Transformer
Encoder

Y1 Y2 V3
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= Sequence-to-Sequence Model.

= Based on self-attention.
Transformer =
Encoder
1 1 1
X1 X2 X3 Xm
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Transformer: Introduction

= Sequence-to-Sequence Model. - bn
= Based on self-attention. "

= Transformer literally “transformed” 2
current deep learning architectures. o
_ Transformer Transformer
- Natural Language Processing Encoder [r— Decoder
(ChatGPT!, BERT, GPT, ...)
- Vision (VIT, ...) 1 1 3
- Speech (Conformer, ...) 1 1 X

- Bioinformatics (AlphaFold, ...)

« Multimodal Learning (LXMERT, VilL-
BERT, ...)

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017




Transformer Variants

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]
parse

)

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132] )

—@inearized )—@inear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

)

_CPrototype )—@lustered Attention[138], Informer[170] )

Memory :
MCA([84], Set Transformer[70], meormer[142])

—@ow-rank )—@ow—rank Attention[45], CSALR[16], Nystromformer [152] )

Attention
_C—)_ —@Ocal Transformer[156], Gaussian Transformer[42] )

CAMTL[98]

Prior —@redlctlve Attention Transformer[143], Realformer[51], Lazyformer[159] ]
Attention

—CAverage Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[lSlD

Collaborative MHA[21]

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]

)

Multi-head —CAdaptive Attention Span[126], Multi-Scale Transformer[44]

)

—CDynamic Routing[40, 74])

DeBERTa[50]

4@} —(Absolute )—@ERT[zg], Wang et al. [139], FLOATER[SS])
Level -
Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]

)

Position
Encoding

—COther Rep. )—CI‘UPE[éS], Roformer([124] )

—Gmplicit Re@—@omplex Embedding[140], R-Transformer [144], CPE[20]

—(Placement )—@ost-LN[zs, 83, 137], pre-LN[6, 17, 67, 136, 141]

_@ayerNorm)——CSubstitutes )—CAdaNorm[lSS], scaled £ normalization[93], PowerNorm[121]

)
)
)

—(Norm—free )—CReZero—Transformer[S] )

|—CAct1v Func. Sw1sh[106] GELU[14, 28], GLU[118])

13  T.Lin,Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers.” 2021

X-formers

Arch.
Level

- Enlarge Product key Memory[69], Gshard[71], Switch Transformer[36],
Capacity Expert Prototyping[155], Hash Layer[110]

Dropping )—@ll -Attention layer[127], Yang et al. [157] )

—@ighweight)—@ite Transformer[148], Funnel Transformer[23], DeLighT[91] )

Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

- UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Transformer-XL[24], Compressive Transformer[103], Memformer[147]
ecurrence Yoshida et al. [160], ERNIE-Doc[30]

Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
Y TENER[154], TNT[48]

—@lt‘ Arch. )—@T[IZS], Macaron Transformer[89], Sandwich Transformer[99], MAN([35], DARTSformer[167] )
—(Encoder )—@ERT[zs], RoBERTa[87], BigBird[163] )

—(Decoder )—@PT[l(n], GPT-2[102], GPT-3[12] )

—@nc.Dec. )—@ARTUZ], T5[104], Switch Transformer[SéD

—(NLP )—@ERT[ZS],ET[IZS], Transformer-XL[24],Compressive Transformer[103], TENER[154] )

—CCV )—@mage Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3] )

_CAudio )—@peech Transformer([31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56] )

—CMultimodal)—CVisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], cOgView[29]]

Fig. 3. Taxonomy of Transformers


http://arxiv.org/abs/2106.04554
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Transformer Architecture: Encoder

= Self-Attention is the main component
of a Transformer.
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Transformer Architecture: Encoder

= Self-Attention is the main component
of a Transformer.

= Another component in FFN (Feed-
forward Network)

- FFN(x) = Linear(ReLu(Linear(x)))
- Weights of FFN are shared

FFN
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Transformer Architecture: Encoder
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Transformer Architecture: Decoder

The decoder is similar to the encoder.
Masked self-attention
- Later inputs are not attended to (i.e.,
attention weights aj" for later inputs
are zero) — Transformer Training
Linear + Softmax
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- The queries are obtained from the
output vectors of the previous
decoder layer.
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Transformer Archituctre: Further details

= Residual connection y

y

' ight |
- Model is less dependent on the number of ) e raeylzf
layers. e x
welght ‘ayer identity

Layer normalization

- Normalize features of each vector using
their mean and variance.

- Faster and more stable training.
Positional Encoding
- For preserving the input order.

- Use sine and cosine (similar to binary
representation of numbers)

Vectorization

- Faster training and inference due to parallel
processing.
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ground-truth y{, ¥, ..., ¥, to compute the
loss.

Q:If y1, ¥, ..., ¥, is fed to the decoder
simultaneously, how does the model (avoid
cheating and) learn to predict y,, ; from y,?

* A: Masked self-attention prevents using
the information of y,_ ; with i > 1.
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Summary

= Transformer encoder and decoder are based on self-attention.
= Decoder uses cross-attention.
= Masked self-attention in the decoder allows for parallel processing.
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Transformer Applications

Transformer Applications
- Machine Translation (vanilla Transformer)
- Text Classification (BERT)
- Text Generation (GPT, ChatGPT)
- Image Classification (ViT)
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Machine Translation (Transformer)

35

BERT -fused NMT

BiB

Transformer Big + MoS —0—
Transformer Bigw
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w CNN-based
@) R.M,\I—Enc— Dec Att
A 20
0
2 LSTM-based
15

10 WMT2014 English-German dataset

2016 2017 2018 2019 2020

Other models -o- Models with highest BLEU score

https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german
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= BERT (Bidirectional Encoder
Representations from Transformers)

= BERT helps Google provide better | ) =
reSUItS S|nce November Of 2020 Can you get medicine for someone pharmacy

= Example: “Can you get medicine for
someone pharmacy”

- Pre-BERT: (Irrelevant) Information
about getting a prescription filled.

- Post-BERT: Google understands judgment and experience
that “for someone” relates to picking U RS
up a prescription for someone else.

After

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101
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BERT: Architecture and Pre-training

Transformer Encoder
Pre-training dataset
- BooksCorpus (800M words)
- English Wikipedia (2,500M words)
Pre-training task 1. Masked Language Model
- Input: a sentence from a the dataset.
- Mask some input tokens at random.
- Predict those masked tokens.
Pre-training task 2: Next Sentence Prediction

 Input: concatenation of two sentences A and
B.

- 50% of the time B is A’'s next sentence.
- 50% of the time B is a random sentence.
- Predict whether B is the next sentence.

25
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BERT: Fine-Tuning

= Fine-Tuning: Use CLS for prediction.

https://huggingface.co/blog/bert-101
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BERT: Fine-Tuning

= Fine-Tuning: Use CLS for prediction.

Classifier
= |t achieved state-of-the-art performance ;
on three classification tasks:
- SQUAD (Stanford Question 11 xm
Answering Dataset); t 1t 1 1
- SWAG (Situations With Adversarial
- BERT =
Generations); Transformer
- GLUE (General Language Encoder
Understanding Evaluation) a
benchmark suit of nine tasks. t t 1 t
CLs X1 X2 Xm

26  https://huggingface.co/blog/bert-101
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Text Generation (GPT) &

= GPT (Generative Pre-trained Transformer)
- Alanguage model
= Look at part of a sentence and predict the next

word. several topics in detail, such as crossmodal information transfer,
= Based on the Transformer decoder. multilevel modeling, and object representation , and it is based on a

- Trained with next token prediction. receli\t paper Theorles of Cross mod al Learning " which has now been
) published as a working paper ( pdf).
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Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon

landing to a 6 year old

i
)

Z

Some people went

to the moon...

ChatGPT

Collect comparison data,
and train a reward model.

Step 2

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain gravity...

Moon is natural
satellite of...

A

Explain the moon

landing to a 6 year old

0 o
o (0]

Explain war...

People went to
the moon...

J

:
()

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs




Image Classification (Vision Transformer)

= Uses Transformer encoder.

CLSI X’]_ Xl2 le

I

Transformer
Encoder

F 11 1

CLS X1 X2 Xm

29 https://en.wikipedia.org/wiki/Vision transformer#/media/File:Vision Transformer.qif
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= Uses Transformer encoder. Classifier
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= Uses Transformer encoder. Classifier
= |nput image is tiled into sections. 4
= The sections is turned into an as i ¥ o
embedding using a linear layer ol ol $
= The results are fed to the Transformer
encoder.

Transformer
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Image Classification (Vision Transformer)

= Uses Transformer encoder.
= |nput image is tiled into sections.
= [he sections is turned into an

embedding using a linear layer

= The results are fed to the Transformer

encoder.

= Vision Transformers are able to capture

global and wider range relations.

= However, more training data is needed.

https://en.wikipedia.org/wiki/Vision transformer#/media/File:Vision Transformer.qif

Ground-truth label: Tree

Classifier
?

s x4 X7 X'm
ttt  f
Transformer
Encoder
I T
CLS X1 X2 Xm
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Summary

The Transformer architecture has been used in different applications.
BERT is based on the Transformer encoder.

GPT is based on the Transformer decoder.

Vision Transformer uses image patches as input tokens.
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Multimodal Learning

Background
Transformers
Transformer Applications
Multimodal Learning
- Introduction
- Vision and Language Integration Methods
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Multimodal Learning

= |n DL language and vision have been
tackled separately until 2014.

= |ntegrating two or more modalities has
recently gained increased attention.

- language, vision, speech, sound,
proprioception, ...

= Some Multimodal (vision and language)
tasks:

- Image Captioning

 Visual Question Answering

- Image Retrieval

- Language-to-Image Generation



Image Captioning

Vision

O

>

Language

Deep CNN Generating

RNN

o

Image Captioning

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

33 O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image Caption Generator,” CVPR 2015




Visual Question Answering

‘ :'l ...& :
Is this person expecting company? Does it appear to be rainy?
What is just under the tree? Does this person have 20/20 vision?

Visual Question Answering

34 S. Antol et al., “VQA: Visual Question Answering,” ICCV 2015
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Image Retrieval

1. Contrastive pre-training

pepper the

aussie pup

A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” ICML 2021

Text
Encoder

Image
Encoder




Language-to-Image Generation

Imagen

A robot couple fine dining with Eiffel Tower in the
background.

An alien octopus floats through a portal reading a

newspaper.

36  https://imagen.research.google/
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Vision Language Integration Techniques

‘aﬁenﬁum ‘ UOISIA
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Vision Language Integration Techniques

= Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

UOISIA

abenbue)

Layers

(e.g, CNN + ReLu)

v __
10139/\
¢ .

A

o =l Layers

*I .. Classifier / Decoder

“=| Layers

Integration s

Layer(s)

Layers

ndino



Vision Language Integration Techniques

ndino

= Q: Given two vectors from two different =
modalities (e.g., vision and language) O Layers e e
how would you integrate them? g | (e O+ Rely [PREITHYCEET/ e
_ 2~ -
= Concatenation B
- fv, D) = [v; 1]
- Layers
NA 3
Inf:?éf{;?” —»|  Layers H-p»
"
—h Layers
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Vision Language Integration Techniques

= Q: Given two vectors from two different

UOISIA

.
.
.
.

modalities (e.g., vision and language) C Layers
how would you integrate them? (2.9, CNN + Relu)

v __
.|0139/\
¢ .

*I .. Classifier / Decoder

ndino

3
= Concatenation N - -~
- fv, D) =[v;] |
. Layers
= Element-wise Multiplication T ™ & 1.
foh=vol B [ A el
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Feature-Wise Transformation

= Feature-Wise Transformation

- The language input “modulates” how
the image input is processed.

- v, D) = (0O v) + f

-y and f3; are vectors computed from

language vector [ (e.g., using a
linear layer)

38 1. https://distill.pub/2018/feature-wise-transformations/
2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018



https://distill.pub/2018/feature-wise-transformations/

Feature-Wise Transformation

= Feature-Wise Transformation
CNN >

UOISIA

20|gSoy
v

- The language input “modulates” how
the image input is processed.

| ojgsay

Jeaur]
| ojgsay

f0. D) = (O +p Iaahlel
-y and f3; are vectors computed from
language vector [ (e.g., using a Example: FiLM architecture

linear layer)

38 1. https://distill.pub/2018/feature-wise-transformations/
2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018
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Transformer-Based Models
1. VQA

= Q: How would you integrate vision and
language using Transformers?

39

H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
J.

1.
2.J. Lu, D. Batra, D. Parikh, and S. Lee, “VIiLBERT: Pretraining Task-Agnostic Visiolinquistic Representations for Vision-and-Language Tasks,” NeurlPS 2019




Transformer-Based Models
1. VQA

= Q: How would you integrate vision and
language using Transformers?

= V;: detected bounding boxes in image.

39

H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
J.

1.
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Transformer-Based Models
1. VQA

= Q: How would you integrate vision and
language using Transformers?

= V;: detected bounding boxes in image.
= [ language tokens (e.g., words).
- e.g., "What is in front of the laptop?”

39

H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
J.

1.
2.J. Lu, D. Batra, D. Parikh, and S. Lee, “VIiLBERT: Pretraining Task-Agnostic Visiolinquistic Representations for Vision-and-Language Tasks,” NeurlPS 2019




Transformer-Based Models

1. VQA
cLs’ |y P In
_ o IMG" vy V2 Vm
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_ : . Vision
= V;: detected bounding boxes in image. FEN
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39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2.J. Lu, D. Batra, D. Parikh, and S. Lee, “VIiLBERT: Pretraining Task-Aagnostic Visiolinquistic Representations for Vision-and-Language Tasks,” NeurlPS 2019
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J.

1.
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Advantages of Transformer for Multimodal Learning

= RNNs and CNNs are constrained by the input space (i.e., 1D, 2D), where the
order of the input matters.
= Transformer operates on sets: input order does not matter.
- Adding new modalities is easier.
= How would you combine vision and language using a transformer?
- Add new modalities and introduce modality-specific embeddings / flags.



Transformer-Based Models
2. PaLM-E (Pathways Language Model with Embodiment)

Mobile Manipulation PaLM-E: An Embodied Multimodal Language Model Task and Motion Planning

Given <emb> Q: How
to grasp blue block?
A: First grasp yellow
block and place it on
the table, then grasp
the blue block.

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block

? ViT

Large Language Model (PaLM)
Human: Bring me the rice chips from the Tabletop Manipulation

drawer. Robot: 1. Go to the drawers, 2. Open
top drawer. | see <img>. 3. Pick the green rice

chip bag from the drawer and place it on the Control <———  A:First, grasp yellow block and ...
counter.

Given <img> Task: Sort
colors into corners.
Step 1. Push the green
star to the bottom left.

Visual Q&A, Captioning ... . Language Only Tasks Step 2. Push the green
Describe the circle to the green star.
Given <img>. Q: What's in the § following <img>: Here is a Haiku about
image? Answer in emojis. A dog jumping embodied language models: Q: Miami Beach borders which ocean? A: Atlantic.
AG»POTD over a hurdle at a Embodied language Q:What is 372 x 18? A: 6696.
dog show. models are the future of Language models trained on robot sensor data can
natural language be used to guide a robot’s actions.

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.ora/abs/2303.03378
https://palm-e.qithub.io/



http://arxiv.org/abs/2303.03378
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Summary

= Multimodal learning is an active research area.
= There are several ways to integrate different modalities.
= Transformer cross-attention can be used to integrated different modalities.
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Open Questions in Deep Learning Research

Generalizability
- How to make models generalize to new situations?
Continual learning
- How can the models learn new data without forgetting previous ones?
Explainability
- How do the models come to the decisions?
Ethical Issues
- How can the models be aligned with human values?
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Questions?
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Resources

= Transformer
« The lllustrated Transformer
- Ch 13 Transformers in "Deep Learning: Foundations and Concepts”
- Formal Algorithms for Transformers

« Dive into Deep Learning - Chapter 11: Attention Mechanisms and
Transformers

= Vision and Language Integration

- A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in Integration of Vision

and Language Research: A Survey of Tasks, Datasets, and Methods,” JAIR
2021



https://jalammar.github.io/illustrated-transformer/
https://link.springer.com/chapter/10.1007/978-3-031-45468-4_12
http://arxiv.org/abs/2207.09238
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688

