
http://www.informatik.uni-hamburg.de/WTM/

Neural Networks

Transformers

Guest lecture by Dr. Jae Hee Lee

▪ Self-Attention
▪ Transformer (Architecture, Inference, Training)
▪ Transformer Applications
▪ Multimodal Learning

Outline

2

▪ Self-Attention
• Representation Learning
• Sequence-to-Sequence Models
• Self-Attention

▪ Transformers
▪ Transformer Applications
▪ Multimodal Learning

Self-Attention

3

▪ Q: What is special about deep learning?

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task and
• is called a representation or a feature

vector.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers
 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task and
• is called a representation or a feature

vector.
▪ DL research = “how to learn good

representations?”.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers
 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task and
• is called a representation or a feature

vector.
▪ DL research = “how to learn good

representations?”.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers
 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task and
• is called a representation or a feature

vector.
▪ DL research = “how to learn good

representations?”.
▪ Different building blocks are introduced to

learn good representations.
▪ In this lecture, we will learn a new building

block: self-attention.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers
 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ How to turn words in vocabulary into a
sequence of -dimensional vectors?

V
d

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ How to turn words in vocabulary into a
sequence of -dimensional vectors?

V
d

• , where and is
a one-hot vector.
x = W ⋅ v W ∈ ℝ|V|×d v

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ How to turn words in vocabulary into a
sequence of -dimensional vectors?

V
d

• , where and is
a one-hot vector.
x = W ⋅ v W ∈ ℝ|V|×d v

▪ How to handle different lengths of
sequences?

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ How to turn words in vocabulary into a
sequence of -dimensional vectors?

V
d

• , where and is
a one-hot vector.
x = W ⋅ v W ∈ ℝ|V|×d v

▪ How to handle different lengths of
sequences?
• One could use an RNN.

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention
• Represent the current word using

the representations of all other
words.

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention
• Represent the current word using

the representations of all other
words.

• But how does self-attention work in
detail?

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ is a matrix (trainable).V

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2V ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2V ⋅v1

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2 V ⋅v1 v2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1

α1
1 ⋅ α1

2 ⋅ α1
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’2

α2
1 ⋅α2

2 ⋅ α2
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

α20
1 ⋅ α20

2 ⋅ α20
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

▪ How to obtain the weights ?αi
1, …, αi

m

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]
(3) , , , …α1

1 = 9 α1
2 = 60 α1

3 = 20

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]
(3) , , , …α1

1 = 9 α1
2 = 60 α1

3 = 20

(4) , , , …α1
1 = 0.0 α1

2 = 1.0 α1
3 = 0.0

▪ Deep Learning allows for learning good representations.
▪ There are different DL building blocks for learning good representations.
▪ Self-attention is a DL building block that overcomes limitations of an RNN.

Summary

9

Questions?

10

▪ Self-Attention
▪ Transformers

• Introduction
• Architecture
• Inference
• Training

▪ Transformer Applications
▪ Multimodal Learning

Transformers

11

▪ Sequence-to-Sequence Model.

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer
Encoder

Transformer
Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

▪ Sequence-to-Sequence Model.
▪ Based on self-attention.

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer
Encoder

Transformer
Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

▪ Sequence-to-Sequence Model.
▪ Based on self-attention.
▪ Transformer literally “transformed”

current deep learning architectures.
• Natural Language Processing

(ChatGPT!, BERT, GPT, …)
• Vision (ViT, …)
• Speech (Conformer, …)
• Bioinformatics (AlphaFold, …)
• Multimodal Learning (LXMERT, ViL-

BERT, …)
• …

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer
Encoder

Transformer
Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

Transformer Variants

13 T. Lin, Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers.” 2021

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

ACT UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Divide &
Conquer

Recurrence Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Hierarchy Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

Pre-Train

Encoder BERT[28], RoBERTa[87], BigBird[163]

Decoder GPT[101], GPT-2[102], GPT-3[12]

Enc.Dec. BART[72], T5[104], Switch Transformer[36]

App.

NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154]

CV Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]

Audio Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

Multimodal VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Fig. 3. Taxonomy of Transformers

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

ACT UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Divide &
Conquer

Recurrence Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Hierarchy Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

Pre-Train

Encoder BERT[28], RoBERTa[87], BigBird[163]

Decoder GPT[101], GPT-2[102], GPT-3[12]

Enc.Dec. BART[72], T5[104], Switch Transformer[36]

App.

NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154]

CV Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]

Audio Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

Multimodal VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Fig. 3. Taxonomy of Transformers

http://arxiv.org/abs/2106.04554

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Encoder

▪ Self-Attention is the main component
of a Transformer.

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Self-
Attention

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)
• FFN(x) = Linear(ReLu(Linear(x)))
• Weights of FFN are shared

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)
• FFN(x) = Linear(ReLu(Linear(x)))
• Weights of FFN are shared

▪ Multi-head attention + concatenation
• 8 Self-attention layers.
• The outputs are concatenated.

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)
• FFN(x) = Linear(ReLu(Linear(x)))
• Weights of FFN are shared

▪ Multi-head attention + concatenation
• 8 Self-attention layers.
• The outputs are concatenated.

▪ Stacked Transformer blocks (make it
deep!)

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

⨉ N

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)
• FFN(x) = Linear(ReLu(Linear(x)))
• Weights of FFN are shared

▪ Multi-head attention + concatenation
• 8 Self-attention layers.
• The outputs are concatenated.

▪ Stacked Transformer blocks (make it
deep!)

Transformer Architecture: Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

⨉ N

x’1 x’2 x’3 x’m

▪ The decoder is similar to the encoder.

Transformer Architecture: Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

Transformer Architecture: Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax

Transformer Architecture: Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax
▪ Cross-attention

• The queries are obtained from the
output vectors of the previous
decoder layer.

• The keys and values are from the
output vectors of the encoder.

Transformer Architecture: Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attentionx’1 x’2 x’3 x’m

kj=Kx’j
vj=Vx’j

y2 y3 yny1

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer
Encoder

qi=Qyi

Linear

Softmax

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax
▪ Cross-attention

• The queries are obtained from the
output vectors of the previous
decoder layer.

• The keys and values are from the
output vectors of the encoder.

Transformer Architecture: Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attentionx’1 x’2 x’3 x’m

kj=Kx’j
vj=Vx’j

y2 y3 yny1

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer
Encoder

qi=Qyi

Linear

Softmaxyi’= v1 + … + vmα 𝗂
𝟣 α 𝗂

𝟣

=qi·kjα 𝗂
𝗃

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.
• Use sine and cosine (similar to binary

representation of numbers)

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.
• Use sine and cosine (similar to binary

representation of numbers)
▪ Vectorization

• Faster training and inference due to parallel
processing.

Transformer Archituctre: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ The “BOS” vector is the first input to

the decoder.
• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3 yny1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

FFN ⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

▪ Q: If is fed to the decoder
simultaneously, how does the model (avoid
cheating and) learn to predict from ?

y1, y2, …, yn−1

yt+1 yt

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer
Encoder

Linear

Softmax

▪ First, encoder outputs x′ 1, x′ 2, …, x′ m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

▪ Q: If is fed to the decoder
simultaneously, how does the model (avoid
cheating and) learn to predict from ?

y1, y2, …, yn−1

yt+1 yt
• A: Masked self-attention prevents using

the information of with .yt+i i ≥ 1

Transformer Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer
Encoder

Linear

Softmax

▪ Transformer encoder and decoder are based on self-attention.
▪ Decoder uses cross-attention.
▪ Masked self-attention in the decoder allows for parallel processing.

Summary

19

Questions?

20

▪ Background
▪ Transformers
▪ Transformer Applications

• Machine Translation (vanilla Transformer)
• Text Classification (BERT)
• Text Generation (GPT, ChatGPT)
• Image Classification (ViT)

▪ Multimodal Learning

Transformer Applications

21

B
L
E
U

 S
C

O
R
E

RNN Enc-Dec AttRNN Enc-Dec Att

GNMT+RLGNMT+RL

Transformer BigTransformer Big
Transformer Big + MoSTransformer Big + MoS

BERT-fused NMTBERT-fused NMT BiBERTBiBERT

Other models Models with highest BLEU score

2016 2017 2018 2019 2020 2021

5

10

15

20

25

30

35

Machine Translation (Transformer)

22 https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

Transformer-based

CNN-based

LSTM-based

WMT2014 English-German dataset

▪ BERT (Bidirectional Encoder
Representations from Transformers)

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”
• Pre-BERT: (Irrelevant) Information

about getting a prescription filled.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101

Before

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”
• Pre-BERT: (Irrelevant) Information

about getting a prescription filled.
• Post-BERT: Google understands

that “for someone” relates to picking
up a prescription for someone else.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
2. https://huggingface.co/blog/bert-101

After

▪ Pre-Training
• Train a model on a large set of

data.
• The model learns good

representations of the input.

Background: Pre-Training and Fine-Tuning

24

▪ Pre-Training
• Train a model on a large set of

data.
• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

▪ Pre-Training
• Train a model on a large set of

data.
• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

Example
▪ Train a image classification model (e.g.,

ResNet) on the ImageNet dataset.
▪ Fine-tune the model on robotic scenes.

▪ Pre-Training
• Train a model on a large set of

data.
• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

Example
▪ Train a image classification model (e.g.,

ResNet) on the ImageNet dataset.
▪ Fine-tune the model on robotic scenes.

Imagenet Target task

▪ Transformer Encoder

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)
• English Wikipedia (2,500M words)

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)
• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model
• Input: a sentence from a the dataset.
• Mask some input tokens at random.
• Predict those masked tokens.

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)
• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model
• Input: a sentence from a the dataset.
• Mask some input tokens at random.
• Predict those masked tokens.

▪ Pre-training task 2: Next Sentence Prediction
• Input: concatenation of two sentences A and

B.
• 50% of the time B is A’s next sentence.
• 50% of the time B is a random sentence.
• Predict whether B is the next sentence.

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Fine-Tuning: Use CLS for prediction.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

Classifier

▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance

on three classification tasks:
• SQuAD (Stanford Question

Answering Dataset);
• SWAG (Situations With Adversarial

Generations);
• GLUE (General Language

Understanding Evaluation) a
benchmark suit of nine tasks.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

Classifier

▪ GPT (Generative Pre-trained Transformer)

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine
learning.
Alas! The machines are here.
They’ll eat our brains and take our jobs,
They’ll do our thinking for us,
And all that we’ll be able to do
Is program them.
Alas! Here comes the Machine

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine
learning.
Alas! The machines are here.
They’ll eat our brains and take our jobs,
They’ll do our thinking for us,
And all that we’ll be able to do
Is program them.
Alas! Here comes the Machine

https://transformer.huggingface.co/doc/gpt2-large

ChatGPT

28

▪ Uses Transformer encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer
Encoder

x1 x2 xm

x’1 x’2 x’m

▪ Uses Transformer encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer
Encoder

Classifier

x1 x2 xm

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer
Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an

embedding using a linear layer
▪ The results are fed to the Transformer

encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer
Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an

embedding using a linear layer
▪ The results are fed to the Transformer

encoder.
▪ Vision Transformers are able to capture

global and wider range relations.
▪ However, more training data is needed.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer
Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ The Transformer architecture has been used in different applications.
▪ BERT is based on the Transformer encoder.
▪ GPT is based on the Transformer decoder.
▪ Vision Transformer uses image patches as input tokens.

Summary

30

▪ Background
▪ Transformers
▪ Transformer Applications
▪ Multimodal Learning

• Introduction
• Vision and Language Integration Methods

Multimodal Learning

31

▪ In DL language and vision have been
tackled separately until 2014.

▪ Integrating two or more modalities has
recently gained increased attention.
• language, vision, speech, sound,

proprioception, …
▪ Some Multimodal (vision and language)

tasks:
• Image Captioning
• Visual Question Answering
• Image Retrieval
• Language-to-Image Generation

Multimodal Learning

32

Image Captioning

33 O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image Caption Generator,” CVPR 2015

Image Captioning

Visual Question Answering

34 S. Antol et al., “VQA: Visual Question Answering,” ICCV 2015

Visual Question Answering

Image Retrieval

35 A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” ICML 2021

Language-to-Image Generation

36 https://imagen.research.google/

Vision Language Integration Techniques

37

Layers
 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

Vision Language Integration Techniques

37

Layers
 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

▪ Concatenation
• f(v, l) = [v; l]

Vision Language Integration Techniques

37

Layers
 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

▪ Concatenation
• f(v, l) = [v; l]

▪ Element-wise Multiplication
•

• Example:

f(v, l) = v ⊙ l

[1
2] ⊙ [2

3] = [2
6]

Vision Language Integration Techniques

37

Layers
 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Feature-Wise Transformation
• The language input “modulates” how

the image input is processed.

•

• and are vectors computed from
language vector (e.g., using a
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/
2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018

https://distill.pub/2018/feature-wise-transformations/

▪ Feature-Wise Transformation
• The language input “modulates” how

the image input is processed.

•

• and are vectors computed from
language vector (e.g., using a
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/
2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018

CNN

Linear

ResBlock

vision
language

ResBlock

ResBlock

Vector

RNN

Example: FiLM architecture

https://distill.pub/2018/feature-wise-transformations/

▪ Q: How would you integrate vision and
language using Transformers?

Transformer-Based Models
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

Transformer-Based Models
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).
• e.g., “What is in front of the laptop?”

li

Transformer-Based Models
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).
• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction

Transformer-Based Models
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
3.

FFN

⨉ N

CLS l1 l2 ln

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

l1 l2 lnCLS’

Transformer Encoder

FFN

⨉ N

IMG v1 v2 vm

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

v1 v2 vmIMG’

Transformer Encoder

k, v
k, v q

q

Vision
Language

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).
• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction
▪ Allows better representation of

relationships between objects and
words.

Transformer-Based Models
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
3.

FFN

⨉ N

CLS l1 l2 ln

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

l1 l2 lnCLS’

Transformer Encoder

FFN

⨉ N

IMG v1 v2 vm

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

v1 v2 vmIMG’

Transformer Encoder

k, v
k, v q

q

Vision
Language

▪ RNNs and CNNs are constrained by the input space (i.e., 1D, 2D), where the
order of the input matters.

▪ Transformer operates on sets: input order does not matter.
• Adding new modalities is easier.

▪ How would you combine vision and language using a transformer?
• Add new modalities and introduce modality-specific embeddings / flags.

Advantages of Transformer for Multimodal Learning

40

Transformer-Based Models
2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378
https://palm-e.github.io/

http://arxiv.org/abs/2303.03378

▪ Multimodal learning is an active research area.
▪ There are several ways to integrate different modalities.
▪ Transformer cross-attention can be used to integrated different modalities.

Summary

42

▪ Generalizability
• How to make models generalize to new situations?

▪ Continual learning
• How can the models learn new data without forgetting previous ones?

▪ Explainability
• How do the models come to the decisions?

▪ Ethical Issues
• How can the models be aligned with human values?

Open Questions in Deep Learning Research

43

Questions?

44

▪ Transformer
• The Illustrated Transformer
• Ch 13 Transformers in “Deep Learning: Foundations and Concepts”
• Formal Algorithms for Transformers
• Dive into Deep Learning - Chapter 11: Attention Mechanisms and

Transformers
▪ Vision and Language Integration

• A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in Integration of Vision
and Language Research: A Survey of Tasks, Datasets, and Methods,” JAIR
2021

Resources

45

https://jalammar.github.io/illustrated-transformer/
https://link.springer.com/chapter/10.1007/978-3-031-45468-4_12
http://arxiv.org/abs/2207.09238
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688

