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▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a 

given task and
• is called a representation or a feature 

vector.
▪ DL research = “how to learn good 

representations?”.
▪ Different building blocks are introduced to 

learn good representations.
▪ In this lecture, we will learn a new building 

block: self-attention.

Deep Learning as Representation Learning
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▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?
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▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ How to turn words in vocabulary  into a 
sequence of -dimensional vectors?

V
d

• , where  and  is 
a one-hot vector.
x = W ⋅ v W ∈ ℝ|V|×d v

▪ How to handle different lengths of 
sequences?
• One could use an RNN.  
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▪ Main Problem: In an RNN (or LSTM) far 
away words are not much related. 
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▪ Main Problem: In an RNN (or LSTM) far 
away words are not much related. 
• Jane went to the cafeteria to buy a 

cup of coffee, but she couldn't buy 
anything because it was closed.

▪ All the information is encoded in one 
vector: yt = f(xt, yt−1)

▪ Solution: Self-Attention
• Represent the current word using 

the representations of all other 
words.

• But how does self-attention work in 
detail?

Limitation of RNNs
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▪  is a matrix (trainable).V
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▪  is a matrix (trainable).V
▪ Compute the value vectors 

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′ i = αi

1v1 + … + αi
mvm

▪ How to obtain the weights ?αi
1, …, αi

m

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017
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▪ Deep Learning allows for learning good representations. 
▪ There are different DL building blocks for learning good representations. 
▪ Self-attention is a DL building block that overcomes limitations of an RNN.
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▪ Sequence-to-Sequence Model.
▪ Based on self-attention.
▪ Transformer literally “transformed” 

current deep learning architectures. 
• Natural Language Processing  

(ChatGPT!, BERT, GPT, …) 
• Vision (ViT, …) 
• Speech (Conformer, …) 
• Bioinformatics (AlphaFold, …) 
• Multimodal Learning (LXMERT, ViL-

BERT, …) 
• …

Transformer: Introduction
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Transformer Variants

13 T. Lin, Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers.” 2021

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]
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▪ Output  is compared against 
ground-truth  to compute the 
loss.
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the information of  with .yt+i i ≥ 1
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▪ Transformer encoder and decoder are based on self-attention. 
▪ Decoder uses cross-attention. 
▪ Masked self-attention in the decoder allows for parallel processing.

Summary
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Questions?
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▪ Background 
▪ Transformers 
▪ Transformer Applications 

• Machine Translation (vanilla Transformer) 
• Text Classification (BERT) 
• Text Generation (GPT, ChatGPT) 
• Image Classification (ViT) 

▪ Multimodal Learning

Transformer Applications

21
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▪ BERT (Bidirectional Encoder 
Representations from Transformers)

▪ BERT helps Google provide better 
results since November of 2020.

▪ Example: “Can you get medicine for 
someone pharmacy”
• Pre-BERT: (Irrelevant) Information 

about getting a prescription filled.
• Post-BERT: Google understands 

that “for someone” relates to picking 
up a prescription for someone else.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019. 
2. https://huggingface.co/blog/bert-101
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▪ Pre-Training 
• Train a model on a large set of 

data. 
• The model learns good 

representations of the input.
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BERT: Architecture and Pre-training 

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT = 
Transformer 

Encoder



▪ Transformer Encoder
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▪ Transformer Encoder
▪ Pre-training dataset 

• BooksCorpus (800M words) 
• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model 
• Input: a sentence from a the dataset. 
• Mask some input tokens at random. 
• Predict those masked tokens.

▪ Pre-training task 2: Next Sentence Prediction 
• Input: concatenation of two sentences A and 

B. 
• 50% of the time B is A’s next sentence. 
• 50% of the time B is a random sentence. 
• Predict whether B is the next sentence.

BERT: Architecture and Pre-training 
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▪ Fine-Tuning: Use CLS for prediction.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101
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▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance 

on three classification tasks: 
• SQuAD (Stanford Question 

Answering Dataset); 
• SWAG (Situations With Adversarial 

Generations); 
• GLUE (General Language 

Understanding Evaluation) a 
benchmark suit of nine tasks.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101
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▪ GPT (Generative Pre-trained Transformer)
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▪ Uses Transformer encoder.
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▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
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▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an 

embedding using a linear layer 
▪ The results are fed to the Transformer 

encoder.
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▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an 

embedding using a linear layer 
▪ The results are fed to the Transformer 

encoder.
▪ Vision Transformers are able to capture 

global and wider range relations. 
▪ However, more training data is needed.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif
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▪ The Transformer architecture has been used in different applications. 
▪ BERT is based on the Transformer encoder. 
▪ GPT is based on the Transformer decoder. 
▪ Vision Transformer uses image patches as input tokens.

Summary
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▪ Background 
▪ Transformers 
▪ Transformer Applications 
▪ Multimodal Learning 

• Introduction 
• Vision and Language Integration Methods

Multimodal Learning

31



▪ In DL language and vision have been 
tackled separately until 2014. 

▪ Integrating two or more modalities has 
recently gained increased attention. 
• language, vision, speech, sound, 

proprioception, … 
▪ Some Multimodal (vision and language) 

tasks: 
• Image Captioning 
• Visual Question Answering 
• Image Retrieval 
• Language-to-Image Generation

Multimodal Learning

32



Image Captioning

33  O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image Caption Generator,” CVPR 2015

Image Captioning



Visual Question Answering

34 S. Antol et al., “VQA: Visual Question Answering,” ICCV 2015

Visual Question Answering



Image Retrieval

35 A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” ICML 2021 



Language-to-Image Generation

36 https://imagen.research.google/
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▪ Q: Given two vectors from two different 
modalities (e.g., vision and language) 
how would you integrate them?
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▪ Q: Given two vectors from two different 
modalities (e.g., vision and language) 
how would you integrate them?

▪ Concatenation 
• f(v, l) = [v; l]
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▪ Q: Given two vectors from two different 
modalities (e.g., vision and language) 
how would you integrate them?

▪ Concatenation 
• f(v, l) = [v; l]

▪ Element-wise Multiplication 
•  

• Example: 

f(v, l) = v ⊙ l

[1
2] ⊙ [2

3] = [2
6]

Vision Language Integration Techniques
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▪ Feature-Wise Transformation 
• The language input “modulates” how 

the image input is processed. 

•  

•  and  are vectors computed from 
language vector  (e.g., using a 
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/ 
2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018 
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▪ Q: How would you integrate vision and 
language using Transformers?

Transformer-Based Models 
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019 
2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019 
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▪ Q: How would you integrate vision and 
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words). 
• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction

Transformer-Based Models 
1. VQA
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▪ Q: How would you integrate vision and 
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words). 
• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction
▪ Allows better representation of 

relationships between objects and 
words.

Transformer-Based Models 
1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019 
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▪ RNNs and CNNs are constrained by the input space (i.e., 1D, 2D), where the 
order of the input matters. 

▪ Transformer operates on sets: input order does not matter. 
• Adding new modalities is easier. 

▪ How would you combine vision and language using a transformer?  
• Add new modalities and introduce modality-specific embeddings / flags.

Advantages of Transformer for Multimodal Learning
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Transformer-Based Models 
2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378 
https://palm-e.github.io/

http://arxiv.org/abs/2303.03378


▪ Multimodal learning is an active research area. 
▪ There are several ways to integrate different modalities. 
▪ Transformer cross-attention can be used to integrated different modalities.

Summary
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▪ Generalizability 
• How to make models generalize to new situations? 

▪ Continual learning 
• How can the models learn new data without forgetting previous ones? 

▪ Explainability 
• How do the models come to the decisions? 

▪ Ethical Issues 
• How can the models be aligned with human values?

Open Questions in Deep Learning Research
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Questions?
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▪ Transformer 
• The Illustrated Transformer 
• Ch 13 Transformers  in “Deep Learning: Foundations and Concepts” 
• Formal Algorithms for Transformers 
• Dive into Deep Learning - Chapter 11: Attention Mechanisms and 

Transformers 
▪ Vision and Language Integration 

• A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in Integration of Vision 
and Language Research: A Survey of Tasks, Datasets, and Methods,” JAIR 
2021

Resources
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https://jalammar.github.io/illustrated-transformer/
https://link.springer.com/chapter/10.1007/978-3-031-45468-4_12
http://arxiv.org/abs/2207.09238
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688

