## Neural Networks

Transformers and Crossmodal Learning
Lecture by Dr. Jae Hee Lee
http://www.informatik.uni-hamburg.de/WTM/

## Outline

- Self-Attention
- Transformer (Architecture, Training, Inference)
- Transformer Applications
- Crossmodal Learning


## Background

- Self-Attention
- Representation Learning
- Sequence-to-Sequence Models
- Self-Attention
- Transformers
- Transformer Applications
- Crossmodal Learning


## Deep Learning as Representation Learning

- Q: What is special about deep learning?


## Deep Learning as Representation Learning

- Q: What is special about deep learning?
- A: Learning meaningful representations.


## Deep Learning as Representation Learning

- Q: What is special about deep learning?
- A: Learning meaningful representations.
- In DL, input is transformed to a vector, which
- contains relevant information to solve a
 given task;
- is called a representation or a feature vector; and


## Deep Learning as Representation Learning

- Q: What is special about deep learning?
- A: Learning meaningful representations.
- In DL, input is transformed to a vector, which
- contains relevant information to solve a
 given task;
- is called a representation or a feature vector; and
- DL research = "how to learn good representations?".


## Deep Learning as Representation Learning

- Q: What is special about deep learning?
- A: Learning meaningful representations.
- In DL, input is transformed to a vector, which
- contains relevant information to solve a given task;
- is called a representation or a feature vector; and
- DL research = "how to learn good representations?".



## Deep Learning as Representation Learning

- Q: What is special about deep learning?
- A: Learning meaningful representations.
- In DL, input is transformed to a vector, which
- contains relevant information to solve a given task;
- is called a representation or a feature vector; and
- DL research = "how to learn good representations?".
- Different building blocks are introduced to learn good representations.
- In this lecture, we will learn a new building block: self-attention.


10. Neural Information Processing Systems

## Sequence-to-Sequence Models

- Input: a sequence of vectors.
- Output: a sequence of vectors.
- Example: Machine translation
- Input: How are you?
- Output: Wie geht es dir?



## Sequence-to-Sequence Models

- Input: a sequence of vectors.
- Output: a sequence of vectors.
- Example: Machine translation
- Input: How are you?
- Output: Wie geht es dir?
- Q: How to turn a sequence of words into a sequence of vectors?



## Sequence-to-Sequence Models

- Input: a sequence of vectors.
- Output: a sequence of vectors.
- Example: Machine translation
- Input: How are you?
- Output: Wie geht es dir?
- Q: How to turn a sequence of words into a sequence of vectors?
- A: Use one-hot encoding



## Sequence-to-Sequence Models

- Input: a sequence of vectors.
- Output: a sequence of vectors.
- Example: Machine translation
- Input: How are you?
- Output: Wie geht es dir?
- Q: How to turn a sequence of words into a sequence of vectors?
- A: Use one-hot encoding

- Q: How to handle different lengths of sequences?


## Sequence-to-Sequence Models

- Input: a sequence of vectors.
- Output: a sequence of vectors.
- Example: Machine translation
- Input: How are you?
- Output: Wie geht es dir?
- Q: How to turn a sequence of words into a sequence of vectors?
- A: Use one-hot encoding
- Q: How to handle different lengths of sequences?
- A: Use an RNN with a special end-of-sentence token.


## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.


## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.


## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention


## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention



## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention



## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention



## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention



## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention
- Represent the current word using the representations of all other words.



## Limitation of RNNs

- Main Problem: In an RNN (or LSTM) far away words are not much related.
- Jane went to the cafeteria to buy a cup of coffee, but she couldn't buy anything because it was closed.
- All the information is encoded in one vector.
- Solution: Self-Attention
- Represent the current word using the representations of all other words.
- But how does self-attention work in detail?


## Self-Attention: The Idea

- $V$ is a matrix (trainable).


## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$


## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$


## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.


## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.



## Self-Attention: The Idea

- $V$ is a matrix (trainable).
- Compute the value vectors
- $v_{i}=V \cdot x_{i}$
- Prepare weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i} \geq 0$
- New vector $x_{i}^{\prime}=\alpha_{1}^{i} v_{1}+\ldots+\alpha_{m}^{i} v_{m}$.
- How to obtain the weights $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$ ?



## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.


## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):


## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

Example
$x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]$

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

Example

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]
$$

$$
\text { - } Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 2 & 3 & 4
\end{array}\right], K=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

Example

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]
$$

$$
\text { - } Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 2 & 3 & 4
\end{array}\right], K=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\text { (1) } q_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], q_{2}=\left[\begin{array}{c}
1 \\
30
\end{array}\right], q_{3}=\left[\begin{array}{c}
0 \\
11
\end{array}\right]
$$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

Example

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]
$$

$$
\text { - } Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 2 & 3 & 4
\end{array}\right], K=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\text { (1) } q_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], q_{2}=\left[\begin{array}{c}
1 \\
30
\end{array}\right], q_{3}=\left[\begin{array}{c}
0 \\
11
\end{array}\right]
$$

(2) $k_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], k_{2}=\left[\begin{array}{l}30 \\ 10\end{array}\right], k_{3}=\left[\begin{array}{c}11 \\ 3\end{array}\right]$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

Example

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]
$$

$$
\text { - } Q=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 2 & 3 & 4
\end{array}\right], K=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\text { (1) } q_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], q_{2}=\left[\begin{array}{c}
1 \\
30
\end{array}\right], q_{3}=\left[\begin{array}{c}
0 \\
11
\end{array}\right]
$$

(2) $k_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], k_{2}=\left[\begin{array}{c}30 \\ 10\end{array}\right], k_{3}=\left[\begin{array}{c}11 \\ 3\end{array}\right]$
(3) $\alpha_{1}^{1}=9, \alpha_{2}^{1}=60, \alpha_{3}^{1}=20, \ldots$

## Self-Attention: Computing the Weights $\alpha_{j}^{i}$

- Idea: $\alpha_{j}^{i}$ is high, if two vectors $x_{i}$ and $x_{j}$ are similar for a given context.
- Let $Q, K$ be matrices (trainable):
(1) Compute the query vectors:

$$
q_{i}=Q \cdot x_{i}
$$

(2) Compute the key vectors:

$$
k_{j}=K \cdot x_{j}
$$

(3) $\alpha_{j}^{i}$ is the dot product of $q_{i}$ and $k_{j}$,

$$
\text { i.e., } a_{j}^{i}=q_{i}^{T} \cdot k_{j}
$$

(4) Apply softmax to $\alpha_{1}^{i}, \ldots, \alpha_{m}^{i}$.

Example
$x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]$

- $Q=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4\end{array}\right], K=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1\end{array}\right]$
(1) $q_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right], q_{2}=\left[\begin{array}{c}1 \\ 30\end{array}\right], q_{3}=\left[\begin{array}{c}0 \\ 11\end{array}\right]$
(2) $k_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], k_{2}=\left[\begin{array}{l}30 \\ 10\end{array}\right], k_{3}=\left[\begin{array}{c}11 \\ 3\end{array}\right]$
(3) $\alpha_{1}^{1}=9, \alpha_{2}^{1}=60, \alpha_{3}^{1}=20, \ldots$
(4) $\alpha_{1}^{1}=0.0, \alpha_{2}^{1}=1.0, \alpha_{3}^{1}=0.0, \ldots$


## Summary

- Deep Learning allows for learning good representations.
- There are different DL building blocks for learning good representations.
- Self-attention is a DL building block that overcomes limitations of an RNN.


## Questions?



## Transformers

- Background
- Transformers
- Introduction
- Architecture
- Inference
- Training
- Transformer Applications
- Crossmodal Learning


## Transformer: Introduction

- Sequence-to-Sequence Model.



## Transformer: Introduction

- Sequence-to-Sequence Model.
- Based on self-attention.



## Transformer: Introduction

- Sequence-to-Sequence Model.
- Based on self-attention.
- Transformer literally "transformed" current deep learning architectures.
- Natural Language Processing (ChatGPT!, BERT, GPT, ...)
- Vision (ViT, ...)
- Speech (Conformer, ...)
- Bioinformatics (AlphaFold, ...)
- Crossmodal Learning (LXMERT, ViLBERT, ...)


## Transformer Variants



Fig. 3. Taxonomy of Transformers

## The Transformer Encoder



## The Transformer Encoder

- Self-Attention is the main component of a Transformer.



## The Transformer Encoder

- Self-Attention is the main component of a Transformer.
- Another component in FFN (Feedforward Network)
- $\operatorname{FFN}(x)=\operatorname{Linear}(\operatorname{ReLu}(\operatorname{Linear}(x)))$
- Weights of FFN are shared



## The Transformer Encoder

- Self-Attention is the main component of a Transformer.
- Another component in FFN (Feedforward Network)
- $\operatorname{FFN}(x)=\operatorname{Linear}(\operatorname{ReLu}(\operatorname{Linear}(x)))$
- Weights of FFN are shared
- Multi-head attention + concatenation
- 8 Self-attention layers.
- The outputs are concatenated.



## The Transformer Encoder

- Self-Attention is the main component of a Transformer.
- Another component in FFN (Feedforward Network)
- $\operatorname{FFN}(x)=\operatorname{Linear}(\operatorname{ReLu}(\operatorname{Linear}(x)))$
- Weights of FFN are shared
- Multi-head attention + concatenation
- 8 Self-attention layers.
- The outputs are concatenated.
- Stacked Transformer blocks (make it deep!)



## The Transformer Encoder

- Self-Attention is the main component of a Transformer.
- Another component in FFN (Feedforward Network)
- $\operatorname{FFN}(x)=\operatorname{Linear}(\operatorname{ReLu}(\operatorname{Linear}(x)))$
- Weights of FFN are shared
- Multi-head attention + concatenation
- 8 Self-attention layers.
- The outputs are concatenated.
- Stacked Transformer blocks (make it deep!)



## The Transformer Decoder

- The decoder is similar to the encoder.



## The Transformer Decoder

- The decoder is similar to the encoder.
- Masked self-attention
- Later inputs are not attended to (i.e., attention weights $\alpha_{j}^{i}$ for later inputs are zero) $\rightarrow$ Transformer Training



## The Transformer Decoder

- The decoder is similar to the encoder.
- Masked self-attention
- Later inputs are not attended to (i.e., attention weights $\alpha_{j}^{i}$ for later inputs are zero) $\rightarrow$ Transformer Training
- Linear + Softmax



## The Transformer Decoder

- The decoder is similar to the encoder.
- Masked self-attention
- Later inputs are not attended to (i.e., attention weights $\alpha_{j}^{i}$ for later inputs are zero) $\rightarrow$ Transformer Training
- Linear + Softmax
- Cross-attention
- The queries are obtained from the output vectors of the previous decoder layer.
- The keys and values are from the output vectors of the encoder.



## The Transformer Decoder

- The decoder is similar to the encoder.
- Masked self-attention
- Later inputs are not attended to (i.e., attention weights $\alpha_{j}^{i}$ for later inputs are zero) $\rightarrow$ Transformer Training
- Linear + Softmax
- Cross-attention
- The queries are obtained from the output vectors of the previous decoder layer.
- The keys and values are from the output vectors of the encoder.



## The Transformer: Further details

## The Transformer: Further details

- Residual connection



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization
- Normalize features of each vector using their mean and variance.



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization
- Normalize features of each vector using their mean and variance.
- Faster and more stable training.



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization
- Normalize features of each vector using their mean and variance.
- Faster and more stable training.
- Positional Encoding
- For preserving the input order.



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization
- Normalize features of each vector using their mean and variance.
- Faster and more stable training.
- Positional Encoding
- For preserving the input order.
- Use sine and cosine (similar to binary representation of numbers)



## The Transformer: Further details

- Residual connection
- Model is less dependent on the number of layers.
- Layer normalization
- Normalize features of each vector using their mean and variance.
- Faster and more stable training.
- Positional Encoding
- For preserving the input order.
- Use sine and cosine (similar to binary representation of numbers)
- Vectorization
- Faster training and inference due to parallel processing.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$



## Softmax

Linear


## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Inference

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- The "BOS" vector is the first input to the decoder.
- "BOS": a vector representing the beginning of sentence.
- Decoder is autoregressive, i.e.,
- output $y_{t}$ of the decoder becomes the input to the decoder at the next step.



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- Ground-truth one-hot vectors $y_{1}, y_{2}, \ldots, y_{n-1}$ with the "BOS" vector are fed to the decoder simultaneously.



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- Ground-truth one-hot vectors



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- Ground-truth one-hot vectors



## Transformer: Training

- First, encoder outputs $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}$
- Ground-truth one-hot vectors



## Summary

- Transformer encoder and decoder are based on self-attention.
- Decoder uses cross-attention.
- Masked self-attention in the decoder allows for parallel processing.

Questions?


## Transformer Applications

- Background
- Transformers
- Transformer Applications
- Machine Translation (vanilla Transformer)
- Text Classification (BERT)
- Text Generation (GPT, ChatGPT)
- Image Classification (ViT)
- Crossmodal Learning


## Machine Translation (Transformer)



5

2016 | 2017 | 2018 | 2019 | 2020 |
| :---: | :---: | :---: | :---: |

## Text Classification (BERT)

## - BERT (Bidirectional Encoder

 Representations from Transformers)
## Text Classification (BERT)

- BERT (Bidirectional Encoder Representations from Transformers)
- BERT helps Google provide better results since November of 2020.


## Text Classification (BERT)

- BERT (Bidirectional Encoder Representations from Transformers)
- BERT helps Google provide better results since November of 2020.
- Example: "Can you get medicine for someone pharmacy"


## Text Classification (BERT)

- BERT (Bidirectional Encoder Representations from Transformers)
- BERT helps Google provide better results since November of 2020.
- Example: "Can you get medicine for someone pharmacy"
- Pre-BERT: (Irrelevant) Information about getting a prescription filled.

Q Can you get medicine for someone pharmacy

MedlinePlus (.gov) ) ency , article

```
Getting a prescription filled: MedlinePlus Medical Encyclopedia
Aug 26, 2017 Your health care provider may give you a prescription in ... Writing a paper prescription that you take to a local pharmacy ... Some people and insurance companies choose to use
```


## Before

## Text Classification (BERT)

- BERT (Bidirectional Encoder Representations from Transformers)
- BERT helps Google provide better results since November of 2020.
- Example: "Can you get medicine for someone pharmacy"
- Pre-BERT: (Irrelevant) Information about getting a prescription filled.
- Post-BERT: Google understands that "for someone" relates to picking up a prescription for someone else.

Q Can you get medicine for someone pharmacy
4. HHS.gov, hipaa, for-professionals

Can a patient have a friend or family member pick up a prescription ...

Dec 19, 2002 • A pharmacist may use professional judgment and experience with common practice to ... the patient's best interest in allowing a person, other that the patient, to pick up a prescription.

After

## Background: Pre-Training and Fine-Tuning

- Pre-Training
- Train a model on a large set of data.
- The model learns good representations of the input.


## Background: Pre-Training and Fine-Tuning

- Pre-Training
- Train a model on a large set of data.
- The model learns good representations of the input.
- Fine-tuning
- Train the model again on the target task with usually less data.
- Modify the model if needed for the target task (e.g., add a different classification layer to the original model).


## Background: Pre-Training and Fine-Tuning

- Pre-Training
- Train a model on a large set of data.
- The model learns good representations of the input.
- Fine-tuning
- Train the model again on the target task with usually less data.
- Modify the model if needed for the target task (e.g., add a different classification layer to the original model).

Example

- Train a image classification model (e.g., ResNet) on the ImageNet dataset.
- Fine-tune the model on robotic scenes.


## Background: Pre-Training and Fine-Tuning

- Pre-Training
- Train a model on a large set of data.
- The model learns good representations of the input.
- Fine-tuning
- Train the model again on the target task with usually less data.
- Modify the model if needed for the target task (e.g., add a different classification layer to the original model).

Example

- Train a image classification model (e.g., ResNet) on the ImageNet dataset.
- Fine-tune the model on robotic scenes.

Imagenet


Target task


## BERT: Architecture and Pre-training

- Transformer Encoder



## BERT: Architecture and Pre-training

- Transformer Encoder
- Pre-training dataset
- BooksCorpus (800M words)
- English Wikipedia (2,500M words)



## BERT: Architecture and Pre-training

- Transformer Encoder
- Pre-training dataset
- BooksCorpus (800M words)
- English Wikipedia (2,500M words)
- Pre-training task 1: Masked Language Model
- Input: a sentence from a the dataset.
- Mask some input tokens at random.
- Predict those masked tokens.



## BERT: Architecture and Pre-training

- Transformer Encoder
- Pre-training dataset
- BooksCorpus (800M words)
- English Wikipedia (2,500M words)
- Pre-training task 1: Masked Language Model
- Input: a sentence from a the dataset.
- Mask some input tokens at random.
- Predict those masked tokens.
- Pre-training task 2: Next Sentence Prediction
- Input: concatenation of two sentences A and $B$.
- $50 \%$ of the time B is A's next sentence.

- $50 \%$ of the time $B$ is a random sentence.


## BERT: Fine-Tuning

- Fine-Tuning: Use CLS for prediction.



## BERT: Fine-Tuning

- Fine-Tuning: Use CLS for prediction.
- It achieved state-of-the-art performance on three classification tasks
- SQuAD (Stanford Question Answering Dataset)
- SWAG (Situations With Adversarial Generations)
- GLUE (General Language Understanding Evaluation) a benchmark suit of nine tasks:



## BERT: Fine-Tuning

- Fine-Tuning: Use CLS for prediction.
- It achieved state-of-the-art performance on three classification tasks
- SQuAD (Stanford Question Answering Dataset)
- SWAG (Situations With Adversarial Generations)
- GLUE (General Language Understanding Evaluation) a benchmark suit of nine tasks:
- Idea introduce an extra token (CLS) for classification.



## Text Generation (GPT) \&

- GPT (Generative Pre-trained Transformer)

1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

## Text Generation (GPT) \&

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.

1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

## Text Generation (GPT) S

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf ).

1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

## Text Generation (GPT) (S)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf ).

1. https://transformer.huggingface.co/doc/gpt2-large
2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?
- Prompt engineering with GPT-3
- The description of the task is embedded in the input.
- The output is the solution.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?
- Prompt engineering with GPT-3
- The description of the task is embedded in the input.
- The output is the solution.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

English: This sandwich is very tasty.
Spanish: E

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?
- Prompt engineering with GPT-3
- The description of the task is embedded in the input.
- The output is the solution.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?
- Prompt engineering with GPT-3
- The description of the task is embedded in the input.
- The output is the solution.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine learning.

## Text Generation (GPT)

- GPT (Generative Pre-trained Transformer)
- A language model
- Look at part of a sentence and predict the next word.
- Based on the Transformer decoder.
- Trained with next token prediction.
- Three versions
- GPT (2018) 117 M parameters
- GPT-2 (2019) 1.5 B parameters
- GPT-3 (2020) 175 B parameters
- GPT-3.5 (2022) 175 B parameters
- GPT 4 (2023) ?
- Prompt engineering with GPT-3
- The description of the task is embedded in the input.
- The output is the solution.

This is a lecture on Transformers and Crossmodal Learning. It covers several topics in detail, such as crossmodal information transfer, multilevel modeling, and object representation, and it is based on a recent paper " Theories of Cross mod al Learning " which has now been published as a working paper ( pdf).

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine learning.
Alas! The machines are here.
They'll eat our brains and take our jobs,
They'll do our thinking for us,
And all that we'll be able to do Is program them.
Alas! Here comes the Machine

## ChatGPT

Step 1
Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler
demonstrates the desired output
behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2
Collect comparison data, and train a reward model.


Step 3
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output calculates a reward for the output.

The reward is used to update

the policy
using PPO.

## Image Classification (Vision Transformer)

- Uses Transformer encoder.



## Image Classification (Vision Transformer)

- Uses Transformer encoder.



## Image Classification (Vision Transformer)

- Uses Transformer encoder.
- Input image is tiled into sections.


Ground-truth label: Tree

## Image Classification (Vision Transformer)

- Uses Transformer encoder.
- Input image is tiled into sections.
- The sections is turned into an embedding using a linear layer
- The results are fed to the Transformer encoder.



## Image Classification (Vision Transformer)

- Uses Transformer encoder.
- Input image is tiled into sections.
- The sections is turned into an embedding using a linear layer
- The results are fed to the Transformer encoder.
- Vision Transformers are able to capture global and wider range relations.
- However, more training data is needed.


Ground-truth label: Tree


## Summary

- The Transformer architecture has been used in different applications.
- BERT is based on the Transformer encoder.
- GPT is based on the Transformer decoder.


## Crossmodal Learning

- Background
- Transformers
- Transformer Applications
- Crossmodal Learning
- Introduction
- Vision and Language Integration Methods


## Multimodal Learning

- In DL language and vision have been tackled separately until 2014.
- Integrating two or more modalities has recently gained increased attention.
- language, vision, speech, sound, proprioception, ...
- Some crossmodal (vision and language) tasks:
- Image Captioning
- Visual Question Answering
- Image Retrieval
- Language-to-Image Generation


## Image Captioning



## Visual Question Answering



Is this person expecting company? What is just under the tree?


Does it appear to be rainy?
Does this person have 20/20 vision?

Visual Question Answering

## Image Retrieval

## 1. Contrastive pre-training



## Language-to-Image Generation



A robot couple fine dining with Eiffel Tower in the background.

An alien octopus floats through a portal reading a
newspaper.

## Vision Language Integration Techniques



## Vision Language Integration Techniques

- Q: Given two vectors from two different modalities (e.g., vision and language) how would you integrate them?



## Vision Language Integration Techniques

- Q: Given two vectors from two different modalities (e.g., vision and language) how would you integrate them?
- Concatenation
- $f(v, l)=[v ; l]$



## Vision Language Integration Techniques

- Q: Given two vectors from two different modalities (e.g., vision and language) how would you integrate them?
- Concatenation
- $f(v, l)=[v ; l]$
- Element-wise Multiplication
- $f(v, l)=v \odot l$
. Example: $\left[\begin{array}{l}1 \\ 2\end{array}\right] \odot\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 6\end{array}\right]$



## Feature-Wise Transformation

- Feature-Wise Transformation
- The language input "modulates" how the image input is processed.
- $f(v, l)=\left(\alpha_{l} \odot v\right)+\beta_{l}$
- $\alpha_{l}$ and $\beta_{l}$ are vectors computed from language vector $l$ (e.g., using a linear layer)


## Feature-Wise Transformation

- Feature-Wise Transformation
- The language input "modulates" how the image input is processed.
- $f(v, l)=\left(\alpha_{l} \odot v\right)+\beta_{l}$
- $\alpha_{l}$ and $\beta_{l}$ are vectors computed from language vector $l$ (e.g., using a


Example: FiLM architecture

## Transformer-Based Models

1. VQA

- Q: How would you integrate vision and language using Transformers?

1. H. Tan and M. Bansal, "LXMERT: Learning Cross-Modality Encoder Representations from Transformers," EMNLP 2019
2. J. Lu, D. Batra, D. Parikh, and S. Lee, "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks," NeurIPS 2019

## Transformer-Based Models

- Q: How would you integrate vision and language using Transformers?
- $v_{i}$ : detected bounding boxes in image.


1. H. Tan and M. Bansal, "LXMERT: Learning Cross-Modality Encoder Representations from Transformers," EMNLP 2019
2. J. Lu. D. Batra, D. Parikh, and S. Lee, "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks," NeurIPS 2019

## Transformer-Based Models

- Q: How would you integrate vision and language using Transformers?
- $v_{i}$ : detected bounding boxes in image.
- $l_{i}$ : language tokens (e.g., words).
- e.g., "What is in front of the laptop?"


1. H. Tan and M. Bansal, "LXMERT: Learning Cross-Modality Encoder Representations from Transformers," EMNLP 2019
2. J. Lu. D. Batra, D. Parikh, and S. Lee, "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks," NeurIPS 2019

Transformer-Based Models 1. VQA

- Q: How would you integrate vision and language using Transformers?
- $v_{i}$ : detected bounding boxes in image.
- $l_{i}$ : language tokens (e.g., words).
- e.g., "What is in front of the laptop?"
- IMG and CLS are used for prediction

 _anguage


Transformer-Based Models 1. VQA

- Q: How would you integrate vision and language using Transformers?
- $v_{i}$ : detected bounding boxes in image.
- $l_{i}$ : language tokens (e.g., words).
- e.g., "What is in front of the laptop?"
- IMG and CLS are used for prediction
- Allows better representation of relationships between objects and words.



## Transformer

- RNNs and CNNs are constrained by the input space (1D, 2D spaces rest.)
- Transformer operates on sets
- Adding new modalities is easier than in the case of
- How would you combine vision and language using a transformer?
- Add new modalities and introduce modality-specific embeddings / flags.


# Transformer-Based Models <br> 2. PaLM-E (Pathways Language Model with Embodiment) 



Describe the following <img> A dog jumping over a hurdle at a dog show.

## Task and Motion Planning



Given <emb> Q: How to grasp blue block? A: First grasp yellow block and place it on the table, then grasp the blue block.

## Tabletop Manipulation



Given <img> Task: Sort colors into corners. Step 1. Push the green star to the bottom left. Step 2. Push the green circle to the green star.
Here is a Haiku about embodied language models: Embodied language models are the future of natural language

Q: Miami Beach borders which ocean? A: Atlantic. Q:What is $372 \times 18$ ? A: 6696.
Language models trained on robot sensor data can be used to guide a robot's actions.

## Transformer-Based Models <br> 2. PaLM-E (Pathways Language Model with Embodiment)



## Summary

- Crossmodal (aka multimodal) learning is an active research area.
- There are several ways to integrate different modalities.
- Transformer cross-attention can be used to integrated different modalities.


## Open Questions in Deep Learning Research

- Generalizability
- Do the models generalize to new situations?
- Continual learning
- How can the models learn new data without forgetting previous ones?
- Explainability
- How do the models come to the decisions?
- Ethical Issues
- How can the models be aligned with human values?

Questions?


## Resources

- Transformer
- The Illustrated Transformer
- Dive into Deep Learning - Chapter 11: Attention Mechanisms and Transformers
- BERT 101 O State Of The Art NLP Model Explained
- Stanford Seminar - Transformers United 2023: Introduction to Transformers w/ Andrej Karpathy
- Speech and Language Processing: Chapter 10 Transformers and Pretrained Language Models
- Formal Algorithms for Transformers
- Vision and Language Integration
- A. Mogadala, M. Kalimuthu, and D. Klakow, "Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods," JAIR 2021

