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▪ How to Train an LLM? 
▪ Unleashing The Power of an LLM 
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▪ LLM Applications in Robotics
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▪ 2020-Present 
• Large language models 
• (e.g. GPT-4)

A Short History of Language Models

3 A Survey of Large Language Models 
Image Source

One-for-All !!!

http://arxiv.org/abs/2303.18223
https://www.google.com/search?sca_upv=1&sxsrf=ADLYWILe0riuDeR6dZ_Itx5w-uScLXVBAA:1717676621624&q=NLP+tasks+examples&uds=ADvngMjIlLeH6JmF8XYRfQNKteaQuX5pewQmmnfnB4Cg6d-MCOo1NcPVOCB-2soisqtK63brJBsYzKP5c59M4-XjyTeuySB9YF86Baz5VmFTLD0s4B0jRxzPWMpAXghdXm7ImhULtvm9Lwyf-vWmNYOivKuyH7PbZobU4nA0AcnO1BM0X2jYJfT-bW6x17Wan4LC_No0n_9JI5Xc2J9MVvy8w44u4t9RvhVg86WfF3y4i62zfJ1LT8ZIR91cCnC2Dr5PvgtFBNCTsZugn0dZOQCYVLO8EpGIz_D068dZ18VW5J6wS8d2_XQ&ictx=0&dpr=1


[1] 

W. X. Zhao et al., “A Survey of Large Language 
Models.” arXiv, Sep. 11, 2023. Accessed: Oct. 24, 
2023. [Online]. Available: http://arxiv.org/abs/
2303.18223

GPT Development

4 A Survey of Large Language Models

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223


[1] 

W. X. Zhao et al., “A Survey of Large Language 
Models.” arXiv, Sep. 11, 2023. Accessed: Oct. 24, 
2023. [Online]. Available: http://arxiv.org/abs/
2303.18223

GPT Development

4 A Survey of Large Language Models

GPT-4o(mni) GPT-4V(ision)

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223


LLM Architecture

5



▪ What is an LLM?

LLM Architecture

5



FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax▪ What is an LLM?
• An LLM is a transformer 

LLM Architecture

5

x’1 x’2 x’3 x’m

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer 
Encoder

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention



FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax▪ What is an LLM?
• An LLM is a transformer 
• decoder-only

LLM Architecture

5

x’1 x’2 x’3 x’m

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer 
Encoder

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention



FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax▪ What is an LLM?
• An LLM is a transformer 
• decoder-only
• w/o cross attention

LLM Architecture

5

x’1 x’2 x’3 x’m

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer 
Encoder

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention



FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax▪ What is an LLM?
• An LLM is a transformer 
• decoder-only
• w/o cross attention
• w/ training tricks (see next 

slides)
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▪ How to Train an LLM? 
• Pre-Training 
• Fine-Tuning 
- Supervised Fine-Tuning 
- Human Preference 

Alignment Tuning 
• Continual Pre-Training 

▪ Unleashing The Power of an LLM 
▪ How to Interpret an LLM? 
▪ LLM Applications in Robotics
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▪ Train the transformer decoder on 
high quality data. 
• Web 
• Books 
• Wikipedia
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▪ Train the transformer decoder on 
high quality data. 
• Web 
• Books 
• Wikipedia

▪ Unsupervised Training with next 
token prediction.
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▪ After Pre-training the model can 
complete sentences.

▪ However, pre-training only is 
not sufficient for answering 
instructions.

▪ Next step 
• Supervised fine-tuning with 

instructions.
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▪ Collect data from human 
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▪ Criteria:  
• Helpful 
• Honest 
• Harmless

▪ Human Preference Alignment 
Tuning 
• Human preference collection 
• Reinforcement learning from 

human feedback
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Step 1: Preference Data Collection

Generation 1: Let’s make one by firstly … 

Generation 2: Sorry I cannot … 

Generation 3: Interesting.

How to make  
a bomb?

LLM



Step 2: Reinforcement Learning from Human Feedback (RLHF)
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▪ Reinforcement Learning (RL)
• Optimize a policy to maximize 

rewards
▪ LLM as RL agent
• Optimize LLM to maximally satisfy 
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- Update LLM using RL loss.
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▪ How to Train an LLM? 
▪ Unleashing The Power of an 

LLM 
• Chain-of-Thoughts 
• Using External Modules 
• Handling Data 

▪ How to Interpret an LLM? 
▪ LLM Applications in Robotics
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• → weather API
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▪ 137123 x 17187 = ?
• → calculator

▪ What is the weather tomorrow?     
• → weather API

▪ Example : LLM + weather API
• Define a get_weather function.
• Prompt LLM to use API if needed.
• If API call exist in the LLM answer:
- An external module executes it 

and returns the output to LLM.
• LLM generates an answer based 

on the function output.

Using External Modules

18
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Handling Data

19 https://imagebind.metademolab.com/ 
https://www.promptingguide.ai/research/rag

▪ Multimodal Data 
• Convert to Text 
• Multimodal LMs (cf.  

Transformer lecture)
▪ Big Data / Local Data 
• Retrieval-Augmented 

Generation (RAG) 
- Documents are converted 

to embeddings. 
- Similarity Matching 

between query and 
document embeddings.

https://imagebind.metademolab.com/
https://www.promptingguide.ai/research/rag
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▪ How to Train an LLM? 
▪ Unleashing The Power of an LLM 
▪ How to Interpret an LLM? 
• Probing 
• Activation Patching 
• Sparse Autoencoders 
• Representation Engineering 

▪ LLM Applications in Robotics

Outline
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Probing

23 Probing Classifiers: Promises, Shortcomings, and Advances. Computational Linguistics, 2022 
From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks, 2024

https://aclanthology.org/2022.cl-1.7
https://arxiv.org/abs/2310.11884


▪ Localizes where specific 
information is stored in a 
pretrained model

▪ Train a simple classifier (probe). 
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▪ High-Level Planning 
• Example:“vacuum-clean the 

floor”: 
- Get a vacuum cleaner 
- Go to the living room 

▪ Low-Level Control 
• Example: Motion planning with 

joint position/velocity control

LLM Applications in Robotics

28



▪ Combines what LLMs say with 
what robots can

High-Level Planning: Say-Can

29 Do As I Can, Not As I Say: Grounding Language in Robotic Affordances, https://say-can.github.io/
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clues.
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...

Push cube A and
cube B close to

each other
Place the plate
onto the target

position

Move the end-
effector to the
target position

Pick up the plate

Open the drawerReach the plate

Pick up cube A

...

What can I
learn to do?

Pick up cube B

LLMs RL+

▪ LLM proposes, learns, collects 
skills for robot

Low-Level Control: Agentic Skill Discovery

33 Agentic Skill Discovery

https://agentic-skill-discovery.github.io/
https://agentic-skill-discovery.github.io/


▪ An LLM is a transformer decoder and training an LLM is done in several stages. 
▪ The performance of an LLM can be improved with diverse methods. 
▪ LLMs can be (partially) interpreted. 
▪ LLMs can be used both for high-level planning and low-level control in robotics.

Summary
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▪ A Survey of Large Language Models 
▪ Ahead of AI 
▪ Build a Large Language Model (From Scratch) 
▪ Transformer Interpretability Tutorial

Resources
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http://arxiv.org/abs/2303.18223
https://magazine.sebastianraschka.com/
https://github.com/rasbt/LLMs-from-scratch
https://arena3-chapter1-transformer-interp.streamlit.app/

